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ABSTRACT

Models, like other first-class artifacts such as source code, are
maintained and may be refactored to improve their quality
and, consequently, one of the derived artifacts. Considering
the size of the manipulated models, automatic support is
necessary for refactoring tasks. When the refactoring rules are
known, such a support is simply the implementation of these
rules in editors. However, for less popular and proprietary
modeling languages, refactoring rules are generally difficult
to define. Nevertheless, their knowledge is often embedded
in practical examples. In this paper, we propose an approach
to recommend refactoring rules that we lean automatically
from refactoring examples. The evaluation of our approach on
three modeling languages shows that, in general, the learned
rules are accurate.
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1 INTRODUCTION

Model-driven engineering is increasingly popular in indus-
try [23]. In industrial contexts, the complexity of models
keeps on increasing and they are used in various development
and maintenance activities. Like other first-class artifacts
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such as source code, they are maintained and refactored to
improve their quality. Considering the size of the manipu-
lated models, automatic support is necessary to refactor these
models.

Much work has been done on model refactoring [24]. Most
of the contributions can be classified into two families: (1)
tools and mechanisms to define and apply refactorings [17,
22, 25, 29, 31, 37], and (2) specific refactoring rule definition
[6, 11, 34]. When the languages (metamodels), in which
models are expressed, are of general purpose such as UML,
there is a critical mass of researchers and users that allow to
shape, test, and prove refactoring rules. This is not the case
for domain-specific languages (DSLs), where it is not always
possible to have such a critical mass to define refactoring
rules, due to the specific expertise needed. Thus knowledge
is not available to feed the refactoring tools.

When fully writing refactoring rules for DSLs is difficult, if
not impossible, a promising alternative is to learn them from
examples. This idea was successfully investigated for learning
model transformation rules from examples [1, 9]. As model
refactoring can be seen as a particular use of model transfor-
mation [18, 19], one can adapt these learning algorithms for
refactoring. However, this adaption is difficult for two reasons.
First, refactoring is an inplace model transformation. Most of
the existing by example techniques are intended to generate
a completely new model. Second, not the entire source model
is affected by the transformation. Only specific situations in
the model constitute refactoring opportunities.

In this paper, we propose an approach to recommend
refactoring rules learned from examples. Our approach can
apply to different scenarios. For example, a modeler starts
performing refactoring on a large model. Then, after some
occurrences, she feeds in the changed model fragments (before
and after the changes) into our approach. The learning process
can then suggest rules that she can apply (with or without
modifications) to the rest of the model. Another scenario
is to collect different versions of models on which manual
refactoring had been applied in the past. Then, starting
from these model versions, our approach derive refactoring
rules to potentially apply on new models. In these scenarios,
our approach does not pretend to provide absolute correct
refactoring rules. Instead, it suggests the rules that best
conform to the provided examples.

We view rule learning as an optimization problem and we
solve it using genetic programming. Our algorithm searches
for refactoring rules that best conform to the provided ex-
amples. Examples are pairs of models (or model fragments)
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Figure 1: Three examples to learn rules for the Pull-up field refactoring

before and after the refactoring. Our assumption is that it
is easier for domain experts to provide concrete examples of
situations where a refactoring must be applied and how to
apply it, than defining fully-fledged, consistent, and general
refactoring rules.

To evaluate our approach, we applied it to three known
metamodels for which we have the sought refactoring rules
beforehand (ground truth).These metamodels have different
kinds of refactoring with different complexities. Our results
show that it is possible to learn complex refactoring rules,
but the accuracy of these rules depends on the coverage of
the provided examples.

In Section 2, we explain the challenges to learn refactoring
transformations from examples. In Section 3, we present our
approach based on genetic programming. In Section 4, we
validate our solution by reporting an empirical experiment
we conducted. In Section 5, we discuss the application and
limitations of our approach. Finally, we review related work
in Section 6 and conclude in Section 7.

2 CHALLENGES IN LEARNING
REFACTORING
TRANSFORMATIONS

2.1 Motivating example

Although there are well-documented refactoring patterns
defined for known formalisms, e.g., UML class diagrams
(UMLCD) [10], it is very difficult for a domain expert to
express complete general refactoring rules for a DSL. Nev-
ertheless, such non-software engineering experts typically
provide their refactoring knowledge by means of examples.
However, learning general rules from examples is not trivial,
since it is very sensitive to the coverage of the examples.

Consider the Pull-up field refactoring pattern in UMLCD.
It is usually described as “if two subclasses have the same field,
move that field to their super-class” [10]. To learn the rule
for this refactoring as a model transformation, the domain
expert could provide the example illustrated in Figure 1 (a).

From this example, one could easily deduce a single model
transformation rule where the precondition pattern, a.k.a.
left-hand side (LHS), consists of a super-class 𝐶1 with two
sub-classes 𝐶2 and 𝐶3 having both an attribute 𝐴1. This
pattern is a generalization of the subset of the left model
with classes A, B and C and attributes x. The action part of
the rule, a.k.a. the right-hand side (RHS), consists of deleting
𝐴1 from 𝐶2 and 𝐶3, and creating an attribute 𝐴1 in 𝐶1.

An important challenge with learning this rule from this
example is that the algorithm should detect the part that has
been modified so that it correctly identifies opportunities to
apply this refactoring on any input UMLCD model. Existing
approaches learning model transformation from examples
cannot be reused for learning refactoring rules. Some of them
[1, 9] try to learn outplace transformations, where a new
model is produced from another one. Others [12, 32] try to
only learn the sequence of refactoring rule application given
the rules and input model, from example. For a refactoring,
the model transformations to learn are inplace: it is the same
model that is modified [29]. For such transformations, the
challenge is to detect the transformation occurrence correctly
in the model, rather than focusing on the changes to perform.
This is therefore a key contribution of this article. In
the previous example, the rule must detect that two subclasses
need to be present from the model pair in Figure 1 (a). That
is because a counterexample is also present between classes F

and G. This helps to reduce the search space for finding the
correct precondition to apply a refactoring.

Another challenge is that the rule deduced from solely this
example only works when there are two subclasses. If there
are three or more subclasses as in Figure 1 (b), applying this
rule will only remove x from two subclasses. A better model
transformation for this refactoring would consist of two rules.
A first rule duplicates an attribute in the super-class when
this attribute exists in two sub-classes. A second rule removes
an attribute from a sub-class when this attribute exists in the
super-class. This is in fact the transformation output
by our algorithm. Nevertheless, this revised transformation
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still has corner cases when it is erroneous. For example, if
the model to refactor is the one in the left part of Figure 1
(c), this transformation will pull attribute x up to A even
if it should not be defined on all its subclasses (i.e., D). In
this case, the correct model transformation should pull the
common attribute to a new intermediate subclass, leading
to the desired refactored model illustrated on the right of
Figure 1 (c).

This example illustrates that even for commonly known
refactoring patterns in software engineering, manually ex-
pressing the general model transformation that implements a
refactoring pattern is very difficult. It is even more difficult for
domain-specific experts who are not used to think algorithmi-
cally, such as in [6]. It also shows how critical the appropriate
choice of examples is to learn the right refactoring rules.

2.2 Problem formulation

Refactoring examples
(before and after models)

Best refactoring rule set
(conforming to the examples)

Spaces of possible refactoring rule sets
(All possible model modifications for the given 

metamodel)

Before After

Metamodel

Figure 2: Refactoring learning as an optimization
problem

Consider the situation where no explicit refactoring knowl-
edge is available. The only available information is the DSL
described by means of a metamodel and a set of examples
each containing a pair of models, i.e., before and after the
refactoring, as depicted in Figure 2. In this situation, learning
refactoring rules can be seen a search problem in which we
explore the very large space of all possible refactoring rule
sets that can be written for the concerned metamodel. To
guide the search, candidate rule sets are evaluated using the
conformance of their behavior with the provided examples,
i.e., applying the refactoring rules to the before models of
the example pairs and comparing the obtained models with
the corresponding after models.

3 LEARNING REFACTORING
TRANSFORMATIONS FROM
EXAMPLES

In this section, we start by presenting the basics of genetic
programming. Then, we show how we adapt this algorithm
to the problem of refactoring rule learning.

3.1 Genetic programming

Genetic programming (GP) is an evolutionary algorithm
whose goal is to automatically create computer programs,
from examples of inputs/outputs, to solve problems [28]. Fig-
ure 3 sketches its general process. The algorithm starts by
generating an initial population of solutions (programs) of a
given size. Then, it evaluates these solutions by means of a
fitness function. This function generally measures the abil-
ity of a program to produce the expected outputs from the
provided inputs. The next step of the algorithm is to evolve
the initial population through a given number of iterations
(generations) by combining three types of operations: elitism,
crossover, and mutation. Thus, for each generation, a fixed
number of the top solutions are automatically reproduced
in the new population following the elitism principle. This
principle ensures that the best solutions are not lost dur-
ing the evolution. Then, to fill the remaining slots in the
population, pairs of parent solutions are selected following
a strategy that favors the fittest solutions, while still giving
a chance to all the solutions. An example of such strategies
is the roulette-wheel selection that consists in assigning a
probability to each solution to be selected, proportionally
to its fitness. Each selected pair of parent solutions is used,
with a certain probability, to produce two child solutions,
thanks to the crossover operator. The child solutions (or par-
ent solutions if the crossover is not performed) are mutated
with a given probability. When a stop condition is satisfied
(generally a fixed number of generations), GP returns the
best solution found.

Create initial population of 
candidate solutions 

Execute each solution on the 
examples and evaluate its 

fitness 
End 

Criteria 

Return best 
solution 

Derive new solutions using 
genetic operators (elitism, 
crossover and mutation) 

Replace current population 
with the new one 

Yes 

No 

Figure 3: Overview of the genetic programming pro-
cess

The above-described algorithm is generic and can be ap-
plied to derive any kind of program. To adapt the algorithm
to a specific problem, we shall define: (1) how to encode
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a program (in our case a set of refactoring rules), (2) how
to generate an initial population of programs, (3) how to
evaluate a program, and (4) how to produce new programs
from existing ones using genetic operators. The remainder of
this section details these specifics to learn refactoring rules
from examples.

3.2 Encoding refactoring rule sets

To learn the refactoring rules, we have a set of 𝑚 examples,
where each example 𝑖 consists of a source model 𝑠𝑖 and a
target model 𝑒𝑖. The task is to find all refactoring rules
that transform any model 𝑠𝑖 into 𝑒𝑖. Therefore, a candidate
solution is a set of refactoring rules, which we call refactoring
set in the following. We denote each individual transformation
by 𝑅 = {𝑟1, 𝑟2, . . . , 𝑟𝑘} for 𝑘 ∈ N, composed of 𝑘 refactoring
rules 𝑟 to be executed. Note that a set of rules 𝑅 encodes a
set of refactorings because the provided example pairs may
correspond to more than one refactoring pattern application.
The initial population is therefore composed of 𝑛 sets of
refactoring rules.

1 (defrule PullUpField
2 ?c1 <- (Class(name ?A))
3 ?c2 <- (Class(name ?B))
4 ?c3 <- (Class(name ?C))
5 ?i1 <- (Inheritance(subclass ?B)(superclass ?A))
6 ?i2 <- (Inheritance(subclass ?C)(superclass ?A))
7 ?a1 <- (Attribute(name ?attName)(class ?B))
8 ?a2 <- (Attribute(name ?attName)(class ?C))
9 (test (and (neq ?c1 ?c2)(neq ?c1 ?c3)(neq ?c2 ?c3)))

10 =>
11 (assert (Attribute(name ?attName)(classe ?A)))
12 (retract ?a1)
13 (retract ?a2))

Listing 1: A rule encoded in the Jess languagee

To encode a refactoring rule, we use the general purpose
declarative language Jess (Java Expert System Shell) [13]. We
specify a metamodel by a set of fact templates, by textually
encoding the metamodel elements, such as classes and inheri-
tance relationships for UMLCD. We encode models as facts,
instances of the fact templates, e.g., class(name Student) and
inheritance(subclass Student)(superclass Person). The ex-
ample given in Listing 1 shows a candidate rule for the Pull-up
field refactoring1. The LHS of the rule encodes a refacotring
opportunity, i.e., a pattern to search for in the source models
(lines 2–9 in our example). The RHS of the rule lists the se-
quence of operation to perform on the LHS pattern instances
(lines 11–13). The pattern to match includes three classes
(lines 2–4). Two of them should inherit from the third one
(lines 5–6). The two subclasses should also have an identical
attribute (lines 7–8). When an instance of this pattern is
found, the operation to perform are: add an attribute in the
superclass with the same name as the ones of the subclasses
(line 11) and remove the attribute from the subclasses (lines
12–13). We can see that this rule will correctly detect the
refactoring in the example pair of Figure 1 (a).

1 Note that this is a simplified rule, types cardinalities and other
properties are also taken into account.

3.3 Initial creation of refactoring sets

As shown in Figure 3, the first step is to create randomly an
initial population of 𝑛 refactoring sets. Each refactoring set
contains a random number of rules within a parameterized
interval. The LHS of a rule is created by generating randomly
a bounded number of fragments based on the metamodel
types. The state conditions on the fragment are generated
randomly based on the element properties as described in
[9].

Figure 4: FTG to create fragments of a excerpt of
the Class Diagram metamodel

To help creating consistent (strongly connected) patterns
to search for, we use a strategy based on the constraints
imposed by the metamodel structure. To this end, we build a
fragment type graph (FTG), a sort of automaton that defines
the dynamics of the pattern elements’ creation. Figure 4
shows an excerpt of an FTG corresponding to a simplified
UMLCD metamodel. In such a graph, nodes are either ele-
ment types of the metamodel to instantiate or the start/end
nodes. When traversing this graph, the current node indi-
cates the metamodel element from which we can create the
next element. These nodes are connected by two types of
edges. A creation edge (depicted as a solid arrow) indicates
that the target node can be created after the source node
is created. Both created elements are connected according
to the metamodel syntax. For example, the edge between
the Class and Attribute means when a class 𝐶1 is created,
the next step may be the creation of an attribute 𝐴1. 𝐴1 is
then considered as an attribute of 𝐶1. The second type of
edge is the back edge (dashed arrow). It indicates that from
the current element, we cannot further create a metamodel
element connected to it. For example, once we create the
attribute 𝐴1, there is no further element to create that can
be connected to it. The back edge outgoing from 𝐴1 sets 𝐶1
as the following element. When a node is the source of many
creation edges, one of the edges is selected randomly. For
example, after setting 𝐶1 as the current node, it is possible
to create a method 𝑀1 for 𝐶1, another attribute 𝐴2 for 𝐶1
or an inheritance relationship 𝐼1 with 𝐶1 as the superclass
or the subclass. In the latter case, the current instance 𝐼1
requires the creation of a new class 𝐶2 to play the role of the
superclass. 𝐶2 becomes the current instance and so on and so
forth. When a node has many back edges, then one of them
is selected arbitrary. If we select the edge whose target is the
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end node, the pattern creation stops and this constitute the
LHS of the rule.

To create the RHS of rules, we randomly select addition
and deletion operators with randomly defined elements.

3.4 Evaluating refactoring sets

We determine how well a set of refactoring rules 𝑅 implements
the transformation of the 𝑚 examples provided using a global
fitness function 𝐹 . As shown in Equation (1), it averages the
fitness functions 𝑓𝑖(𝑅) that calculate how “close” 𝑅 is from
producing the expected result for each example.

𝐹 (𝑅) =

∑︀𝑚
𝑖=1 𝑓𝑖(𝑅)

𝑚
(1)

Like other approaches that learn transformations [1, 2, 8, 9],
to evaluate 𝑓𝑖(𝑅), we apply 𝑅 on the considered source model
𝑠𝑖 of the example pair 𝑖 to produce a model 𝑝𝑖 that we
compare with 𝑒𝑖. However, because we deal with inplace
transformations, we must ensure that 𝑅 only modifies the
concerned model elements and preserves the others. To define
𝑓𝑖, let us consider the following four sets. 𝐴 and 𝐷 are
the sets of elements added and deleted by 𝑅 respectively,
when comparing 𝑠𝑖 with 𝑝𝑖. 𝐸𝐴 and 𝐸𝐷 are the sets of
elements expected to be added and deleted respectively, when
comparing 𝑠𝑖 with 𝑒𝑖. 𝑆𝐷 is the set of elements that should
not be deleted, when comparing 𝑠𝑖, 𝑝𝑖 and 𝑒𝑖. Then, we
compute the following sets. 𝐶𝐴 = 𝐴∩𝐸𝐴 and 𝐶𝐷 = 𝐷∩𝐸𝐷
are the sets of elements that have been correctly added and
deleted respectively. 𝐼𝐴 = 𝐴 ∖ 𝐸𝐴 and 𝐼𝐷 = 𝐷 ∖ 𝐸𝐷 are
the sets of elements that have been incorrectly added and
deleted respectively. To avoid bias favoring rules with higher
number of elements, these sets are computed for each type
𝑡 ∈ 𝑇𝑖, 𝑇𝑖 being the set of types present in the metamodel
and instantiated in example 𝑖.

The fitness function 𝑓𝑖(𝑅) includes for each type 𝑡 two
components, 𝑚𝑜𝑑𝑡(𝑅) and 𝑝𝑟𝑒𝑠𝑡(𝑅) that calculate respec-
tively the model modification and preservation scores when
applying 𝑅 to 𝑠𝑖

2:

𝑓𝑖 =
1

|𝑇𝑖|
×

∑︁
𝑡∈𝑇𝑖

𝛼×𝑚𝑜𝑑𝑡 + 𝛽 × 𝑝𝑟𝑒𝑠𝑡 (2)

𝑚𝑜𝑑𝑡(𝑅) is the proportion of elements of type 𝑡 added or
deleted by 𝑅 among the expected ones. If no change is ex-
pected for a type 𝑡, then 𝑚𝑜𝑑𝑡(𝑅) = 1. Formally:

𝑚𝑜𝑑𝑡 =

{︃
1, if |𝐸𝐴𝑡|+ |𝐸𝐷𝑡| = 0
|𝐶𝐴𝑡|+|𝐶𝐷𝑡|
|𝐸𝐴𝑡|+|𝐸𝐷𝑡| , otherwise

(3)

𝑝𝑟𝑒𝑠𝑡(𝑅) is the proportion of elements in 𝑠𝑖𝑡 (elements of
type 𝑡) that are not supposed to change and that are actually
preserved. It is defined formally as:

𝑝𝑟𝑒𝑠𝑡 =
1

2
×

(︂(︂
1− |𝐼𝐴𝑡|

|𝑠𝑖𝑡|+ |𝐼𝐴𝑡|

)︂
+

(︂
1− |𝐼𝐷𝑡|

|𝑆𝐷𝑖|

)︂)︂
(4)

2To make the notation less cluttered, we omit “(𝑅)” in the various
components of 𝑓𝑖 equations.

3.5 Deriving new refactoring sets

To generate the next population of rule sets, we start by
selecting a given number of the fittest ones and include them
directly in the generated population. This elitism strategy
allows us to preserve the best genetic material across gen-
erations. Then, to fill the remaining slots, we perform the
crossover and mutation operators on the rule sets of this
generation. More specifically, we select a pair of rule sets fol-
lowing the roulette-wheel strategy. This assigns to each rule
set a probability to be selected proportionally to its fitness.
When two parent rule sets are selected three equiprobable
scenarios can be performed: crossover only, mutation only,
or both. Whatever the chosen scenario is, the crossover and
mutation operations are performed with a certain probability.

Crossover. The crossover operator produces two new rule
sets by combining the rules of the parent rule sets. Let us
consider the two rule sets 𝑅𝑎 and 𝑅𝑏. If the crossover is chosen,
we apply it with a certain probability as follows. Cut-points,
𝑥 and 𝑦 are respectively selected to partition each set of
rules into two: 𝑅𝑎 = {𝑟𝑎1, . . . , 𝑟𝑎𝑥, 𝑟𝑎𝑥+1, . . . , 𝑟𝑎𝑘} and 𝑅𝑏 =
{𝑟𝑏1, . . . , 𝑟𝑏𝑦, 𝑟𝑏𝑦+1, . . . , 𝑟𝑏𝑙}. The we recombine the partitions
to produce two new rule sets: 𝑅𝑎′ = {𝑟𝑎1, . . . , 𝑟𝑎𝑥, 𝑟𝑏𝑦+1,
. . . , 𝑟𝑏𝑙} and 𝑅𝑏′ = {𝑟𝑏1, . . . , 𝑟𝑏𝑦, 𝑟𝑎𝑥+1, . . . , 𝑟𝑎𝑘}.

Mutation. If mutation is chosen for a given rule set, one
of four mutation operators modifies the rules themselves. At
the rule set level, an operator adds/removes a randomly gen-
erated/selected rule (as described in Section 3.3). At the rule
level, an operator adds/removes pattern elements in the LHS,
while still conforming to the FTG. Finally, two operators
adds/removes modification operations in the RHS: one for
assertion and one for deletion operations (see Section 3.2).
To avoid any bias, all operators are selected with equal prob-
ability. However, a great part of the problem complexity
is to search for the accurate refactoring opportunity before
performing the refactoring. Therefore, we assign the LHS
mutation operator twice as much probability as the others.

4 VALIDATION

We evaluate our approach along the following three research
questions:

RQ1 Do the learned refactoring sets refactor mod-
els correctly? We first verify that all the refactorings
have been correctly applied, such that the discovered
transformation rules produce the correct target models.

RQ2 Do the expected refactorings appear in the
learned rules? We then validate that the transforma-
tion rules correctly implement the intended refactorings
from the examples. This guarantees that we do not
achieve the production of the correct target model re-
sulting from an arbitrary combination of rules, but
thanks to the correct refactoring rules.

RQ3 Are the results obtained attributable to our
approach? Since we rely on a probabilistic evolution-
ary approach, we have to check if we consistently obtain
similar results across executions, and if these results
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Table 1: Selected metamodels, refactorings, and model examples

Metamodel Refactoring Description Occurrences Models

UMLCD

Pull up field Move an attribute shared by two classes to a superclass 3

5
Pull up method Declare the method in the superclass and keep the method definition in

the current class
4

Pull up association Move an association shared by two classes to a superclass 1
Clean up attribute Delete an attribute of a sub-class if it is also defined in the superclass 4

WPN

Removing implicit place Remove a place that does not change the overall marking of the net 2

4
Removing EFC structures If a set of places all have arcs to the same set of transitions, introduce an

intermediate transition and place to direct the token flow from the set of
places to the set of transitions

3

Removing TP-cross struc-
tures

If a set of transitions all have arcs to the same set of places, introduce an
intermediate place and transition to direct the token flow from the set of
transitions to the set of places

1

BPMN

Pull up incoming sequence
flow

If a sequence flow connects two tasks where one is in a process and the
other in a sub-process, the flow should connect the task to the sub-process
directly

2

3Pull up outgoing sequence
flow

Similar as above, but from the sub-process to the task 2

Replace sequence by message
flow

Replace a sequence flow between two classes in different pools by a message
flow

2

Explicit data association If a sequence flow connects two tasks via an artifact, connect the two tasks
directly with a sequence flow and use a data association for the artifact

2

Symmetric modeling Every nested opening gateway must have its corresponding closing gateway
in the same order

1

are better than those of the best solution found by a
random exploration which considers an equal number
of solutions.

4.1 Experiment setting

This section details the evaluation setting. This includes the
considered metamodels and their respective refactorings, the
examples used in the learning process, the parameters of the
GP algorithm, and the method used to answer the research
questions.

4.1.1 Data collection. To test our approach, we use three
metamodels, for which the refactoring rules are known (ground
truth) and there are sufficient data sources to collect examples
from. For each metamodel, we collected examples as pairs of
before and after models available online or in the literature.
Often, the model examples include multiple refactorings. Ta-
ble 1 summarizes the data used. For each metamodel, we list
the refactoring types performed in the examples, the number
of refactoring-type occurrences found in the examples, and
number of models considered.

UML class diagrams (UMLCD). For UMLCD, we reverse
engineered partial models from two well-known open-source
Java projects: ArgoUML and Xerces-J. Since these projects
have many releases available, we selected model versions
before and after refactoring. Using XSLT, we implemented
templates to generate sets of facts in Jess from the XML
models.

From the given examples, we identified the four refactor-
ings3 reported in Table 1 as cataloged in [10]. It is interesting
to note that some refactorings can overlap. For example,

3It is not necessarily a refactoring per se, but a form of anomaly
correction.

Clean up attribute is also part of Pull up field. We anticipate
that their respective transformations will share a rule.

Workflow Petri Nets (WPN). WPN is a particular class of
Petri nets with a single source place, a single sink place, and
all places and transitions are on a path from the source to
the sink. In [35], the authors formalize three refactorings that
improve the execution of the WPN by removing redundant
elements in a way that does not change the observable be-
havior of the net. The refactoring are complex to implement
as the authors provide several algorithms to apply them. In
[35], they also provide four examples of WPN.

Business Process Model and Notation (BPMN). BPMN
is a widely used formalism for business analysts to create,
implement, and monitor processes [26]. Several works have
proposed refactoring opportunities to improve the semantics
and readability of BPMN models. The work in [27] provides
four good and bad practices related to task connectivity. We
also considered an additional refactoring called Symmetric
modeling from [5]. We collected three models from the OMG
standard [26] to detect these refactoring opportunities.

4.1.2 Algorithm parameters. Like for any evolutionary al-
gorithm, one needs to specify the parameters to run our
GP-based approach. To tune these parameters, we ran our
approach with different configurations on different data sets.
For the validation, we retained the following configuration.
We set the size of the initial populations to 30 candidate
refactoring rule sets. This size is constant for all evolutions
of the population. We set both probabilities of crossover and
mutation to 0.9. Unlike classical genetic algorithms, having a
high mutation probability is not unusual for GP algorithms
(see for instance [30]). For the elitism, we injected the top 3
refactoring rule sets into the next generation.
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Table 2: Results of learned refactorings with GP

Metamodel Run Fitness Precision Recall
Rules obtained by GP

Expected rules
Exact Partial Unexpected

UMLCD

1 100% 100% 100% 3 1 0

2 100% 100% 100% 3 1 0 4
3 100% 100% 100% 3 1 0

WPN
1 88.7% 98.0% 77.2% 1 3 0
2 82.0% 100% 83.8% 2 1 1 3
3 82.0% 100% 74.5% 2 2 0

BPMN

1 98.8% 72.6% 89.3% 2 2 2

2 98.8% 72.6% 89.3% 2 1 3 5
3 99.4% 81.0% 94.8% 3 2 1

4.1.3 Methodology. To answer RQ1, we compare the pro-
duced model 𝑝𝑖 with the expected model 𝑒𝑖, relying on preci-
sion and recall measures. In Equation (5), we define precision
as the ratio between number of correct modifications and the
total number of modifications, based on the sets defined in
Section 3.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1

|𝑇𝑖|
×

∑︁
𝑡∈𝑇𝑖

|𝐶𝐴𝑡|+ |𝐶𝐷𝑡|
|𝐶𝐴𝑡|+ |𝐶𝐷𝑡|+ |𝐼𝐴𝑡|+ |𝐼𝐷𝑡|

(5)

In Equation (6), we define the recall as the ratio between
number of correct modifications and total number of expected
modifications, which we defined as 𝑚𝑜𝑑 in Equation (3).

𝑅𝑒𝑐𝑎𝑙𝑙 =
1

|𝑇𝑖|
×

∑︁
𝑡∈𝑇𝑖

|𝐶𝐴𝑡|+ |𝐶𝐷𝑡|
|𝐸𝐴𝑡|+ |𝐸𝐷𝑡|

(6)

For RQ2, we focus on the quality of the refactoring rules
obtained with respect to the known refactoring rules. We
manually inspect the best set of refactoring rules obtained
for each metamodel to determine how close they are to the
expected ones. We determine if an obtained rule completely
or partially matches the expected one, or if it is not expected
at all. We also check if some expected rules were missing.

To answer RQ3, we perform five runs of our approach for
UMLCD with 10, 000 generations. We also use five runs of
random generation, each having 30 000 rule sets (equivalent to
30 solutions per generation × 10 000 generation). We generate
the random rule sets according to the initial population
generation procedure. Then for each run (GP and random),
we select the solution with the best fitness. We compare our
approach with the random generation in terms of precision
and recall of the obtained rule sets.

4.2 Results and interpretation

4.2.1 RQ1: Correct refactored models. The left part of
Table 2 presents the results of the fitness, precision, and
recall scores that report on the quality of the refactored
models. For each metamodel, we report the results of three
executions as the learning process is probabilistic by nature.
The three executions use exactly the same settings, including
the same initial population. For UMLCD, we observe perfect

results on three executions for both precision and recall when
comparing the refactored models generated by the learned
rules with those given in the examples.

The precision in the case of WPN is also almost perfect.
Except for one execution where a slight modification was
considered as incorrect, all additions and deletions of model
elements were appropriate. However, the recall is relatively
low (between 74% and 84%), meaning that some modifica-
tions where not performed as expected. After analyzing the
obtained models, this recall score can be explained by the
following considerations. The WPN metamodel contains few
elements, essentially places, transitions, and arcs. Then, the
sought refactoring are complex variations of instances of the
same few element types. For example, a refactoring rule re-
moves an unnecessary place depending on other places and
transitions. To learn such a rule, the provided before- and
after-refactoring examples should include enough fragments
differentiating this situation from other similar situations
where the refactoring is not necessary.

For the BPMN metamodel, we observe an opposite ten-
dency, i.e., a better recall and a lower precision. The lower
precision can be explained by the fact that some additions
and deletions were made because the learned rules missed
some conditions to have a more precise pattern to search for.

4.2.2 RQ2: Correct refactoring rules. Producing the correct
models using the learned rules does not mean that these rules
are those expected. For this research question, we investigate
whether the learned rules are correct with respect to the
known and expected refactorings. Note that a specific type
of refactoring can be realized by means of one or more refac-
toring rules. Thus we will not have one-to-one comparisons
between the learned and expect rules. We rather decide if a
learned rule has a correct contribution to a refactoring alone
or in conjunction with other rules.

The right part of Table 2 presents an overview of the rule
sets obtained by our approach compared to the expected
one. For the UMLCD metamodel, we were expecting four
refactoring types (see Table 1). We obtained the exact rule
for the Clean up attribute. The combinations of this rule with
respectively two other rules implement exactly the Pull up
field and Pull up method refactorings. We have the same
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Figure 5: Rule obtained by GP for the Removing
TP-cross structures refactoring

situation with Pull up association with the exception that
one condition was missing in one rule, i.e., checking that an
inheritance relationship exists only for one of the two classes
having the association to pull up. This missing condition did
not affect the precision and recall in RQ1, because, there was
no counterexample in the provided models where a missing
inheritance prevents from performing the refactoring.

For the WPN metamodel, we were able to learn all three
refactorings. However, the GP consistently found, for the
three executions, one more rule. In one execution, this addi-
tional rule has nothing to do with the expected refactorings.
In the other cases, the additional rules contribute partially
to the refactorings together with the other rules. The learned
rules are not trivial. Figure 5 illustrates the rule we obtained
for the Removing TP-cross structure refactoring. It looks
for two transitions, each connected to the same two places
and then replaces these arcs with a place and a transition
to connect the initial pair of transitions to the initial pair of
places.

For the BPMN metamodel, the GP also generated more
rules than expected. But in this case, many of these rules were
not contributing to the expected refactoring: this explains
the relatively low precision score for RQ1. We accurately
obtained the expected rules for two refactorings, namely
Symmetric modeling and Explicit data association. For the
three other refactorings, the GP was not able to derive the
complete refactoring rules. As illustrated in Table 2, it only
partially matched some of the rules and missed others. This
situation illustrates the fact that the derived rules do not
necessarily have the exact same structure (pattern elements
and relations) as the rules we would have written by hand.
Nevertheless, the learning process produces rules that, overall
correctly perform the refactoring with respect to the provided
examples.

4.2.3 RQ3: GP vs random. Before comparing the precision
and recall of the learned refactoring rule sets, we first look at
the convergence of the five GP executions. Figure 6 shows the
curves corresponding to the best fitness evolution during the
respective executions. These curves always converge towards

Figure 6: Evolution of fitness score for UMLCD over
five runs using our approach

a fitness score of 100% (as reported in Table 2) after a certain
number of generations.

To compare with the random generation, we obtained
perfect precision and recall for all the five executions of GP.
As Table 3 shows, the precision is below 51% and the recall is
below 56% for the five random executions. We can conclude
that the results obtained for UMLCD are attributable to
our learning algorithm and not to the number of explored
solutions.

Table 3: Results of random generation for UMLCD

Run Fitness Precision Recall

1 85.3% 50.7% 55.4%
2 86.6% 26.9% 42.1%

3 86.3% 45.0% 49.8%
4 86.3% 42.0% 45.0%

5 86.6% 48.6% 48.8%

4.3 Threats to validity

The evaluation of our approach has shown that it can learn
complex refactorings in many cases. However, a threat to
the validity of these results is the generalization of these
results to DSLs, as mentioned in our motivations. Although
experimenting with such DSLs is important, the need of
having known refactorings (ground truth) and available model
examples, limits our possibilities. Still, we believe that the
considered metamodels and refactorings are complex enough
and exhibit a good variety to represent an acceptable setting
for a preliminary evaluation.

The choice of the examples is another possible threat. We
selected examples that are almost prototypic. In real-life
scenarios, models can be modified for different purposes, so it
is not always possible to distinguish refactorings from other
changes. However, our setting matches the scenario where a
modeler starts performing the refactoring on some fragments
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and then gives the initial and modified fragments to our
learning algorithm.

Another validity threat is concerned with the stop crite-
rion for the GP algorithm. We ran our algorithm for a fixed
amount of time (hours) and then checked how many gener-
ations were needed to find the best rule set. In a real-life
scenario, waiting for such an amount of time is not always
feasible, especially if the modeler uses our approach in an
interactive way.

5 DISCUSSION AND LIMITATIONS

Like many other example-based approaches, the quality of the
learned rules strongly depends on the quality of the examples
provided. As we have shown in the BPMN case, it is utterly
important to provide examples having enough variations to
distinguish when different, but close, situations may lead
(examples) or not (counterexamples) to a refactoring.

Related to this observation, we also noticed that the par-
tially matched rules were under or over-constrained. Many of
these situations could have been avoided had we integrated
negative conditions. Our rule creation procedure generates
conditions that check for the presence of elements instantiat-
ing a pattern. However, in some cases, one has to also check
for the absence of elements. Integrating negative conditions
in the learning process will increase the expressiveness of the
learned rules.

In our current implementation, we are able to successfully
detect structural anomalies in the model to be refactored,
i.e., related to the presence of metamodel element instances
and their connectivity. We have found cases in WPN, where
the precondition of a rule requires universal quantification
(e.g., Removing TP-cross structures). In a by-example ap-
proach, it is hard to generalize a rule from a finite sample
set of examples. As in Figure 5, the GP was only able to
find rules for two and three transitions, because the examples
did not contain situations with more transitions. However,
the general rule in [35] states that it applies to an arbitrary
number of transitions. This also comes from the limitation of
the model transformation paradigm that relies on existential
quantification. It is, nevertheless, possible in Jess to add
queries and functions in the LHS to generalize the matching.
Such queries can be implemented according to navigation
possibilities for a given metamodel, independently from the
sought refactorings. For example, in UMLCD, a primitive
query can consist of generating the set of the associations
involving a given class. During the learning, this set can be
used to test the absence of associations (size equals 0, for
example). This approach was successfully used in [1].

Other types of refactorings are not structural by nature.
For instance, in UMLCD, a pair of models example may
exhibit shortening an attribute with a very long name. The
intent behind this semantic anomaly correction is not only
very hard to encode, but also hard to derive from a by-
example approach. As this refactoring is not related to the
model structure, generating the rule conditions (LHS) is not

possible in the current version. To handle this, string and
arithmetic operations must be used, as done in [1].

6 RELATED WORK

In the literature, many tools have been proposed to refactor
models [17, 22, 25, 29, 31, 37]. Although they use model
transformation to refactor models, they do not learn refac-
torings automatically. In this section, we discuss approaches
that automate model refactoring and approaches that derive
model transformations from examples or demonstrations.

6.1 Search-based model refactoring

Our approach is a search-based technique and, like very few
others, is dedicated to refactoring models [21]. Most search
techniques rely on evolutionary algorithms, especially genetic
algorithms. In [12], the authors also propose to generate a
sequence of refactoring by measuring the similarities between
provided examples. Instead, our fitness function measures
explicitly correct and incorrect modifications. SORMASA [3]
is a tool that assists the user by suggesting a set of model
refactorings. It relies on a mono-objective evolutionary algo-
rithm aiming at increasing cohesion and reducing coupling of
UMLCD models. In [14], the author present an approach that
attempts to introduce design patterns in UMLCD models by
optimizing specific software design metrics.

There are, nevertheless, some approaches that consider
behavior preservation. For example in [20], the authors im-
plement a multi-objective evolutionary algorithm to optimize
the trade-off between improving the quality related UML
models.

6.2 Model transformations by
demonstration

By demonstration approaches are used to derive inplace trans-
formations automatically. In [4], the authors proposed an
approach to alleviate the complexity of developing model
refactoring operations. They derive semi-automatically en-
dogenous model transformations by analyzing user editing
actions when refactoring models. They collect all atomic op-
erations performed by the user by comparing the initial and
final models. The operations are then saved in a difference
model from which they propose a set of pre/postconditions of
the refactoring operations to the user for manual refinement.
Sun et al. [33] propose a similar approach for deriving similar
transformations. To collect the operations, they extend the
modeling environment to monitor the user editing actions.
The recorded operations are then analyzed to remove inco-
herent and unnecessary ones. Using an inference engine, they
express user intentions as reusable transformation patterns.
In [15], the authors proposed an automatic inference of in-
place transformations. Their approach can infer advanced rule
features, such as negative application conditions, multi-object
patterns, and global invariants.
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6.3 Model transformation by examples

Several works have investigated how to learning model trans-
formations from examples [7, 36, 38]. However, these ap-
proaches are limited to exogenous and outplace model-to-
model transformations. Learning inplace transformations
from examples is more complex because we must preserve
the unaffected elements of the model. Faunes et al. [8, 9] used
GP learn transformation rules from examples of outplace
transformations. Two articles [1, 16] tried to address more
complex transformations. Although the latter did not need
to learn rules, the former employed a strategy based on di-
viding the learning process in different steps, using adaptive
mutation, and using fine-grained transformation traces in the
examples.

7 CONCLUSION

In this paper, we present an approach to recommend refac-
toring rules learned from examples. The examples are pairs
of models representing the versions before and after the ap-
plication of refactorings. The learning is performed using
GP by evolving a population of randomly generated sets of
model transformation rules guided by the conformance to the
provided examples. As such our approach does not pretend
to find the absolute refactoring rules for a given modeling
language. It instead finds the rules that best conform to the
considered examples.

To evaluate our approach, we applied it on three metamod-
els together with refactored model examples. This evaluation
showed that our approach can learn complex refactoring
rules and that the obtained results are not attributable to
the number of explored solution, but to our search strategy.

Although the obtained results are satisfactory, there is
room for improvement. First, expressiveness of the learned
rules can be enhanced by considering new constructs such
as negative conditions, navigation primitives, and arithmetic
and string operations. The performance of our algorithm in
terms of execution time deserves to be improved. We plan to
optimize the best set of rules found by the GP to improve
the efficiency of the rule engine. Finally, the accuracy of our
approach can be enhanced by considering more sophisticated
genetic operators and search strategies. For example, adapta-
tion mutation can be used to adapt the search strategy to
the characteristics of the current population, as in [1]. This
includes changing the mutation probability when no improve-
ment is noticed for many generations or if the diversity inside
the populations decreases. Another way of improving the
search strategy is by experimenting with multi-objective GP
algorithms. The 𝑚𝑜𝑑 and 𝑝𝑟𝑒𝑠 scores can be implemented as
two different objectives without the need of defining weights
to aggregate them. Minimizing the size of the rules can be
another objective to avoid rules with unnecessary conditions.
In the future, we also plan to test our approach on a larger
set of metamodel, including DSLs, for which it is difficult to
define refactoring rules.
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Jézéquel. 2009. Generic Model Refactorings. In Model Driven
Engineering Languages and Systems (LNCS). Springer, 628–643.

[23] Parastoo Mohagheghi, Wasif Gilani, Alin Stefanescu, Miguel A
Fernandez, Bjørn Nordmoen, and Mathias Fritzsche. 2013. Where
does model-driven engineering help? Experiences from three indus-
trial cases. Software & Systems Modeling 12, 3 (2013), 619–639.

[24] Maddeh Mohamed, Mohamed Romdhani, and Khaled Ghédira.
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